Ryanodine receptor regulates endogenous cannabinoid mobilization in the hippocampus.

نویسندگان

  • Masako Isokawa
  • Bradley E Alger
چکیده

Endogenous cannabinoids (eCBs) are produced and mobilized in a cytosolic calcium ([Ca2+]i)-dependent manner, and they regulate excitatory and inhibitory neurotransmitter release by acting as retrograde messengers. An indirect but real-time bioassay for this process on GABAergic transmission is DSI (depolarization-induced suppression of inhibition). The magnitude of DSI correlates linearly with depolarization-induced increase of [Ca2+]i that is thought to be initiated by Ca2+ influx through voltage-gated Ca2+ channels. However, the identity of Ca2+ sources involved in eCB mobilization in DSI remains undetermined. Here we show that, in CA1 pyramidal cells, DSI-inducing depolarizing voltage steps caused Ca2+-induced Ca2+ release (CICR) by activating the ryanodine receptor (RyR) Ca2+-release channel. CICR was reduced, and the remaining increase in [Ca2+]i was less effective in generating DSI, when the RyR antagonists, ryanodine or ruthenium red, were applied intracellularly, or the Ca2+ stores were depleted by the Ca2+-ATPase inhibitors, cyclopiazonic acid or thapsigargin. The CICR-dependent effects were most prominent in cultured or immature acute slices, but were also detectable in slices from adult tissue. Thus we suggest that voltage-gated Ca2+ entry raises local [Ca2+]i sufficiently to activate nearby RyRs and that the resulting CICR plays a critical role in initiating eCB mobilization. RyR may be a key molecule for the depolarization-induced production of eCBs that inhibit GABA release in the hippocampus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The ryanodine receptor regulates endogenous cannabinoid mobilization in the hippocampus

Endogenous cannabinoids (eCBs) are produced and mobilized in a cytosolic calcium ([Ca]i) dependent manner, and they regulate excitatory and inhibitory neurotransmitter release by acting as retrograde messengers. An indirect but real time bioassay for this process on GABAergic transmission is DSI (depolarization-induced suppression of inhibition). The magnitude of DSI correlates linearly with de...

متن کامل

Shielding Effect of Ryanodine Receptor Modulator in Rat Model of Autism

Introduction: A neurodevelopmental disorder, autism typically identified with three primary behavioral consequences, such as social impairment, communication problems and limited or stereotypical behavior. Because of its co-morbidity and lack of therapeutic options, autism is a global economic burden. A short chain of fatty acid, propionic acid formed biologically by gut microbiome. Propionic a...

متن کامل

Chronic ethanol consumption regulates cannabinoid CB1 receptor gene expression in selected regions of rat brain.

AIMS The aim of this study was to examine the effects of chronic ethanol consumption in cannabinoid CB(1) receptor gene expression in Wistar rats. METHODS Rats were exposed to a bottle containing a solution of ethanol (10% v/v) and saccharin (0.25% w/v) for 52 days. At the end of this period, rats were killed by decapitation and cannabinoid CB(1) receptor gene expression was measured by in si...

متن کامل

Repeated administration of cannabinoid receptor agonist and antagonist impairs short and long term plasticity of rat’s dentate gyrus in vivo

Introduction: The effects of cannabinoids (CBs) on synaptic plasticity of hippocampal dentate gyrus neurons have been shown in numerous studies. However, the effect of repeated exposure to cannabinoids on hippocampal function is not fully understood. In this study, using field potential recording, we investigated the effect of repeated administration of the nonselective CB receptor agonist WIN5...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 95 5  شماره 

صفحات  -

تاریخ انتشار 2006